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Abstract

Terrain surfaces are often approximated by geometric meshes to permit e�cient rendering.

This paper describes how the complexity of an approximating irregular mesh can be varied across

its domain in order to minimise the number of displayed facets while ensuring that the rendered

surface meets pre-determined resolution requirements. We �rst present a generalised scheme

to represent a mesh over a continuous range of resolutions using the output from conventional

single-resolution approximation methods. We then describe an algorithm which extracts a

surface from this representation such that the resolution of the surface is enhanced only in

speci�c areas of interest. We prove that the extracted surface is complete, minimal, satis�es

the given resolution constraints and meets the Delaunay triangulation criterion if possible. In

addition, we present a method of performing smooth visual transitions between selectively-

re�ned meshes to permit e�cient animation of a terrain scene.

1 Introduction

Interactive terrain rendering is a key operation in a number of applications such as ight simulation

and geographical information systems (GIS). A terrain scene is notable in rendering terms for two

reasons. Firstly, the underlying database is usually a large set of data points arranged in a regular

grid. Secondly, the disparity between distances in object-space from the viewpoint to the closest

and furthest points of the rendered surface is often large.

This �rst observation implies that if a terrain surface is to be rendered e�ciently, it must �rst

be approximated. Traditional approximation techniques can be divided into those which retain the

regular grid nature of the original datapoints and those which produce a Triangulated Irregular

Network (TIN). The e�ciency with which a TIN can represent a surface for rendering purposes for

rendering purposes was noted in [FL79], [FEKR90] and [DP95]. Simple subsampling can be used to

approximate terrain in a grid-based fashion ([CMR90], [FZPM93]), but this may lead to signi�cant

features of the surface being discarded or modi�ed [SP92].

The second characteristic of terrain scenes, the range of distances between the viewpoint and

facets in the scene, indicates that the e�ciency of the rendering process could be improved further

by enhancing the level of detail of the rendered model only in speci�c areas of its domain. Such

selective re�nement could increase the resolution of the rendered surface close to the viewer, in

areas around critical lines of the model (peaks, pits, passes, etc ([Dou86]) and in other areas of

interest (AOIs) while reducing the resolution of the surface in less important regions. Performing

selective re�nement on a grid-based representation of terrain is relatively simple ([CMR90], [TB94],

[LKR+96]) but this imposes signi�cant restrictions on the approximation process. The method

outlined below permits the production of a selectively-re�ned TIN and thus the bene�ts of using a

triangle-based representation can be realised.

In addressing the task of selective mesh re�nement, this paper makes the following contributions:

� A framework is presented within which most existing single-resolution terrain approximating

techniques can perform selective mesh re�nement with respect to object- and screen-space

rendering requirements.

� We show how a global resolution criterion can be speci�ed to ensure that the level of detail of

speci�c surface features is enhanced.
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� We demonstrate how to smoothly transition between di�erent selective re�nements of a mesh

in order to maintain the temporal continuity of an animated sequence.

We obtain a selectively-re�ned mesh by combining seamlessly a set of terrain surface approxima-

tions which have been obtained from an unspeci�ed simpli�cation process without reference to the

techniques peculiar to that process. In this way we decouple the mesh simpli�cation and selective

re�nement processes and hence permit a particular approximation technique to be used when it is

advantageous for a speci�c terrain rendering application. In particular, we can extract a selectively-

re�ned mesh from a set of single-resolution Triangulated Irregular Networks (TINs) [FL79] and hence

obtain the representation and rendering bene�ts of modelling a surface as a triangulation [FEKR90].

We describe data structures which represent a surface as a coarse approximation together with a set

of re�nement operations which incrementally re�ne portions of the surface. This is a generalisation

of previous continuous-resolution surface representation techniques ([DP95], [CPS95], [Hop96]).

Our selective re�nement algorithm extracts a surface from this representation such that the

resolution of each facet in the extracted surface is guaranteed to meet given resolution criteria.

These minimum resolution constraints are speci�ed by a Resolution Control Function (RCF) de�ned

in object-space. The resolution required in a rendered surface is often described solely by local screen-

space considerations, such as the projected size of triangles ([Hop96], [LKR+96]). By using a global

object-space resolution constraint, which can be supplemented by screen-space requirements, we

can ensure that features of the terrain are displayed at directly-queryable object-space resolutions.

This is essential for applications such as navigation and nap-of-the-earth ight simulation ([Sch83],

[Kle90]).

We prove that a selectively-re�ned surface generated by this method has the following properties:

1. The extracted surface satis�es the RCF.

2. The extracted surface completely covers the domain of the original.

3. The extracted surface is the smallest set of facets which can form a complete surface which

satis�es the RCF.

4. If the coarse approximation and re�nement operations are Delaunay triangulations1 then the

extracted surface will also satisfy the Delaunay criterion.

Furthermore, we demonstrate how to smoothly transition between adjacent frames in a dynamic

display of a selectively-re�ned mesh by modifying the geometry of the displayed surface. These

geomorphs [Hop96] maintain a complete surface during the transition period and hence no blending

is required to minimise temporal aliasing.

The next section contains a discussion of the background to our work in the �eld of multiresolution

terrain modelling. The following sections discuss the terminology, data structures, algorithms and

proofs connected with our selective re�nement and geomorphing techniques. We conclude with

results from an implementation of these techniques.

2 Multiresolution Modelling

A number of recent papers have tackled the problem of \multiresolution terrain modelling" and

have demonstrated data structures and algorithms which permit the extraction of multiple single-

resolution approximations as well as the extraction of surfaces at variable resolution. It is the latter

problem which was labelled \selective re�nement" by Hoppe [Hop96].

De Floriani and Puppo [DP95] generalise the previous work of De Floriani et al, Scarlatos [SP92],

Ferguson [FEKR90], and others, in their formal description of a Hierarchical Triangulation from

which a selectively-re�ned generalised triangulation can be obtained. This generalised triangulation

satis�es the given precision requirement at each point in the domain but cannot guarantee continuity

between triangles. A further triangulation step is required to produce a complete surface, but this

may produce a mesh which violates the previously-satis�ed precision requirement.

De Berg and Dobrindt [dD95] present a system of linking a hierarchical sequence of Delaunay

triangulations such that a selectively-re�ned surface can be extracted which satis�es the Delaunay

1A Delaunay triangulation T is such that for each triangle t in T , there is no vertex of T in the interior of t's

circumcircle [PS85]
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property. As [DP95] notes, though, the resulting surface is not guaranteed to meet the speci�ed

accuracy requirements.

The algorithm of Cignoni et al [CPS95] overcomes the above problems by extracting a surface

from what the authors call a HyperTriangulation (HT), in which the re�nements required to modify

each Level of Detail (LOD) produced by the approximating process are successively \pasted" onto

the coarsest approximation. A variable resolution surface can be extracted from the HT such that

it satis�es a simple resolution function, viz the approximation error in the extracted triangles is

proportional to their distance from a speci�ed viewpoint. As [DP95] notes, this may be suitable for

applications such as ight simulators, but not if we wish to have a more complex resolution function.

For example, we may wish to ensure that the resolution of the rendered surface is high around the

viewer, in regions containing critical lines of the model (peaks, pits, passes, etc [Dou86]) and in other

Areas of Interest (AOIs). A surface which satis�es a resolution function incorporating all of these

constraints can be extracted by our selective re�nement algorithm.

The progressive mesh (PM) approach of Hoppe [Hop96] permits a 3D surface to be represented

in a lossless, continuous-resolution form upon which certain operations can be performed, includ-

ing selective re�nement and geomorphing. Hoppe's selective re�nement method applied to terrain

rendering has three disadvantages over the algorithm presented below. Firstly, the minimal data

structure employed by Hoppe limits the selective re�nement process to producing only an approx-

imation of the surface required by the input resolution constraints (Hoppe states that one of the

items of future work is a spatial data structure to permit e�cient selective re�nement). Secondly,

the PM data structure also prevents geomorphing between two di�erent selectively-re�ned meshes.

Lastly, the PM approach requires the use of a particular simpli�cation strategy and this produces

approximations which use optimised vertex positions rather than the original data points. This

may not be acceptable to particular rendering applications and our method provides a framework

within which selective re�nement can be performed on the output of most approximation techniques,

including that used by progressive meshes.

3 Preliminaries

3.1 Selective Re�nement Overview

The two inputs to our selective re�nement algorithm are:

(A) The output from a surface approximation method, in the form of a coarse single-resolution

approximation to a terrain surface and a set of re�nement operations, i.e. the incremental

modi�cations which were made to the base mesh in order to approximate the original dataset

over a continuous range of (increasing) resolutions. Such a re�nement history, of which Hoppe's

PM approach [Hop96] and Cignoni's HyperTriangulation [CPS95] are examples, is indepen-

dent of the approximating process and can be generated by both re�nement and simpli�cation

techniques [CPS95]. Indeed, all of the algorithms discussed in [HG95] can provide this approx-

imation information apart from Rossignac & Borrel's grid-sampling method [RB93], Turk's

point repulsion procedure [Tur92] and Lounsbery et al's wavelets-based multiresolution analy-

sis [LDW94] since these methods cannot provide a correspondence between triangles in di�erent

LODs.

Section 3.3 formalises this continuous-resolution surface representation.

(B) A Resolution Control Function (RCF) which governs the extraction process. The RCF is a

single-valued bivariate function de�ned over the terrain's domain which speci�es the minimum

resolution required of each facet in the extracted surface. Section 3.4 expands on the concept

of an RCF and presents an example of how an RCF may be constructed.

The output from our algorithm is a geometric mesh, representing the terrain data which was

approximated by input (A), which completely covers that input's domain and is such that the

degree of re�nement of each facet in the mesh satis�es the RCF across the domain of that facet.

3.2 Triangulations

We assume in the remainder of this paper that our algorithm's input (A) is a set of Triangulated

Irregular Networks (TINs) from which it must produce a selectively-re�ned triangulation, although
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the algorithm can handle any polygonal approximating mesh. The e�ciency with which a TIN can

represent a surface for rendering purposes was noted in [FL79], [FEKR90] and [DP95]. In contrast,

the cost and complexity of handling multiple levels of detail of TINs conventionally was discussed in

[CMR90], [TB94], and [LKR+96]. The results we present later demonstrate that the e�ciency of our

selective re�nement technique could permit interactive terrain rendering systems to take advantage

of TINs.

To provide a framework for our manipulation of triangulations, we adapt the notation of [DP95].

Let V = fv1; : : : ; vng be a �nite set of points in the Euclidean plane E
2 . A triangulation of set V is

a maximal plane straight-line graph G = (V;E), where E is a set of non-crossing line segments with

endpoints in V [PS85]. A triangulation of V can be expressed as a tuple T = (V;E; T;A), where
T is the set of triangular faces induced by G on the plane. The faces of T cover the interior of the

convex hull of V ; such a region is called the domain of triangulation T , and denoted D(T ). The

interior of the domain, i.e. excluding the convex hull of V , is denoted by I(T ). A is the attribute

information of the triangulation; A will include the elevation values associated with each element

of V and may also contain discrete and scalar attributes such as material identi�ers, normals, etc

[Hop96].

We can now use these terms to state the problem tackled by our algorithm. We produce a

selective re�nement of a high-resolution triangulation T = (V;E; T;A) of the original terrain data.

The input to the algorithm consists of a base triangulation, T 0 = (V 0; E0; T 0; A0), which covers the

terrain domain 
, together with a sequence of re�nement operations, fR1; : : : ; Rmg. The output is

a triangulation T̂ = (bV ; bE; bT ; bA), approximating T , which completely covers 
 and is such that the

degree of re�nement of each triangle ti 2 T̂ satis�es the RCF across the domain of that triangle,

D(ti). Note that we use I(ti) to indicate the interior of triangle ti.

3.3 Mesh Representation

We represent a mesh in a continuous-resolution form by storing it as a base triangulation together

with a history of the re�nements which are required to improve the base mesh with respect to

some resolution metric (Section 3.3.1). The selective re�nement algorithm needs additional infor-

mation about the spatial relationships between the re�nement operations and this is represented in

a Directed Acyclic Graph (Section 3.3.2).

3.3.1 Re�nement Operations

A re�nement operation corresponds to the insertion of one or more points into a previous approxi-

mation. Hence a re�nement operation can be completely speci�ed by the set of triangles which its

point insertions a�ect, together with the retriangulation of the domain of those triangles. Formally,

we de�ne a re�nement operation Ri = (T i

pre
; T i

post
) such that, for 1 � i � m:

� T i

post
= fV i

post
; Ei

post
; T i

post
; Ai

post
g is the retriangulation, of a portion of 
, introduced by the

re�nement operation, and;

� T i

pre
is the set ftj : tj 2 T k

post
; 0 � k < i; I(tj) \ D(T i

post
) 6= ; and I(tj) \ D(T l

post
) = ;; k <

l < ig of triangles which existed immediately previous to the invocation of Ri and which were

a�ected by that operation. Note that we let R0 be a pseudo re�nement operation representing

T 0, where T 0
pre

= ; and T 0

post
= T 0.

� jT i

pre
j < jT i

post
j since we are considering re�nement operations created by the addition of points

to a coarse triangulation. Re�nement operations obtained from a simplifying approximation

process can be \reversed" to this notation by simply swapping the sets T i

pre
and T i

post
in each

region Ri and modifying V i

post
, Ei

post
and Ai

post
appropriately.

To complete our speci�cation, we also require that input re�nement operations must be both

complete and minimal, where we de�ne:

� Ri is complete () D(T i

pre
) = D(T i

post
), i.e. the domain of the set of triangles which the

operation a�ects coincides with the domain of its speci�ed retriangulation.
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� Ri is minimal () 69S � T i

pre
s.t. D(S) \D(T i

post
) = D(S \ T i

post
), i.e. there is no subset of

triangles in T i

pre
which can be completely replaced by a subset of T i

post
and hence the re�nement

operation is speci�ed as locally as possible.

A re�nement operation Ri which performs the transformation of a set of triangles T i

pre
into a

new set of triangles T i

post
is visualised in Figure 1(a).

pre

T i
post

T i

(a) Operation Ri.

T i

children(R )i

p

Resolution

(b) Ri in resolution space.

Ri

children(R )i

(c) children(Ri).

Figure 1: Visualisations of a re�nement operation.

The re�nement operations can be viewed as a set of transformations which produce a sequence

of single-resolution triangulations from the base triangulation T 0, i.e.

T 0
R1

! T 1
R2

! : : :
Rm

! T m

We assume that this ordering of re�nement operations corresponds to an increasing minimum

resolution among the triangulations T 0; : : : ; T m, i.e. 8tj 2 T i; resolution(tj) > "i, for some "i; 0 �
"i < 1, and "i < "i+1 for 0 � i < m, where resolution(t) is the resolution metric used by the surface
approximation process over triangle t. We assume that the range of resolution(t) is [0; 1], where a
value of 1 indicates that triangle t is in the highest-resolution approximation, T m.

We adapt the birth error and death error terms of Cignoni et al [CPS95] to conform to our

resolution-based representation. We say that a re�nement operation Ri has a birth resolution,

birthresi, which is the maximum resolution in the overall triangulation just before Ri was performed

(we assume birthres0 = 0); and each triangle t in T i

post
has a death resolution, deathres(t), which

is the maximum resolution in the overall triangulation just before t was retriangulated by another

re�nement operation (or 1 if t is part of T m).

A region Ri is visualised in resolution space (i.e the vertical axis represents increasing resolution)

in Figure 1(b), where the triangles of T i

pre
are shown at their birth resolution, birthresi. The triangles

in T i

post
are drawn shaded at their death resolutions together with the T j

pre
for each of the Rj in

which these triangles lie. Note that this implies that the T j

pre
are shown at their corresponding

birthresj .

3.3.2 The Re�nement Region DAG

The birth and death resolution attributes are used to order the re�nement regions (a term used

to describe the triangles produced by a re�nement operation, i.e. T i

post
, or interchangeably with

\re�nement operation" where no confusion will arise) in a directed acyclic graph (DAG) which

captures the overlapping nature of these regions.

We de�ne the sets of children and parents of a re�nement region Ri as

children(Ri) = fRk : T i

post
\ T k

pre
6= ; and 9t 2 T i

post
s.t. deathres(t) = birthreskg
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parents(Ri) = fRk : T i

pre
\ T k

post
6= ; and 9t 2 T k

post
s.t. deathres(t) = birthresig

The sets of ancestors and descendants of a particular region can be de�ned as an extension of

these sets in the usual way. The arcs in Figure 1(c) indicate the relationships which are represented

by the set children(Ri).

The re�nement region DAG can then be de�ned as the set of nodes fR0; : : : ; Rmg together with

the set of arcs f(Ri; Rj) : Rj 2 children(Ri)g. The root of the DAG is R0.

3.4 The Resolution Control Function

We specify the minimum resolution required of each of the triangles in the extracted surface as a

global function, RCF : D(
) ! [0; 1]. A triangle t in the extracted surface is said to satisfy the

RCF if 8p 2 D(t); deathres(t) � RCF (p).
We de�ne two terms which relate re�nement regions to the RCF:

� Ri is �ner than the RCF if 8t 2 T i

post
; p 2 D(t); deathres(t) � RCF (p), i.e. if the post-

re�nement set of triangles in operation Ri satisfy the RCF;

� Ri is completely �ner than the RCF if 8p 2 D(Ri); birthresi � RCF (p), i.e. if the pre-

re�nement set of triangles in operation Ri satisfy the RCF.

Example components from which a practical RCF could be constructed are visualised in res-

olution space in Figure 5. This RCF is used in the Results section to extract a mesh which is

selectively-re�ned for a particular view of the Mt St Helens dataset, where the viewpoint is close

to the edge of the dataset and the viewer is looking horizontally towards the centre of the domain.

The �rst three RCF components shown in Figure 5 are view-dependent: the minimum resolution

of the triangles in the view frustum is speci�ed to be 0.5 by component (a); a \Head Up Display"

in the centre of the screen is simulated by requiring the triangles which lie in the corresponding

object-space cone (b) to be at a higher resolution; and the viewpoint is speci�ed as an AOI by a

Gaussian function centred on that point in (c). Figure 5(d) shows the result of using a critical line

detection technique [Dou86] to obtain a function which requires the resolution of the ridge around

the crater in the dataset to be increased. Components (b), (c) and (d) were clipped by the view

frustum and then added to (a) to produce the RCF of Figure 5(e).

Hoppe [Hop96] presents local screen-space heuristics which determine the degree of re�nement

of a selectively-re�ned progressive mesh, without regard for object-space resolution accuracy. Such

heuristics could be used to supplement the above object-space de�nition of an RCF.

4 Selective Re�nement Algorithm

4.1 Algorithm

The selective re�nement algorithm proceeds in two stages:

1. Region Expansion

We construct a list, X , of re�nement regions ordered by increasing birth resolution by per-

forming a partial traversal of the DAG. X must contain su�cient regions to permit a complete

surface to be extracted from these regions such that the surface satis�es the RCF. The traversal

proceeds by placing R0 on X and continues until:

Ri 2 X () (9Rj 2 X : Ri 2 children(Rj); Rj is not �ner than the RCF and

Ri is not completely �ner than the RCF) or 9Rk 2 X : Ri 2 ancestors(Rk)

Informally, this means that a) the children of every region in X which does not satisfy the RCF

are also in X if they themselves are not completely �ner than the RCF and b) the ancestor

regions of every region in X are also in X .

This can be implemented by placing R0 on X and then performing RegionExpand on each

element in X , in coarsest to �nest order, where the RegionExpand routine is de�ned below.
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Function: RegionExpand

In: Ri
: region which may be expanded

In/Out:X: expanded regions list

begin

if Ri
is not �ner than the RCF then

for each child, Rj
, of Ri

do

if Rj
is not completely �ner than the RCF then

X := X +Rj
+ ancestors(Rj

)nX
endif

endfor

endif

end

2. Surface Extraction

A surface is extracted from X by traversing its members in order of decreasing resolution and

applying an operation In�ll(Ri) to each region Ri, where In�ll(Ri) is de�ned as:

T̂ := T̂ + ft 2 T i

post
: I(t) \ I(T̂ ) = ;g

We will show in Section 4.3 that the region traversal order guarantees that In�ll(Ri) is never

called when triangles in T i

post
partially overlap T̂ and hence that a complete surface is extracted.

Our implementation of In�ll operates as follows. We associate an edgelist, Li, with each

re�nement region Ri. During the extraction process, each Li contains a set of directed edges

which is a subset of Ei

post
. Li and the boundary of Ri form a complete chain of directed edges

which bound the area within T i

post
which remains to be extracted. The rules applied by In�ll

are:

(a) If Li is empty and either children(Ri) = ; or no member of children(Ri) has previously

been encountered then Ri is a \starting point" around which the surface will be extracted

and T i

post
is added to the current extracted surface, T̂ .

(b) When a boundary edge, e, of a re�nement region is extracted then e, directed appropri-

ately, is added to Lj where j is such that Rj is the parent of Ri whose Ej

post
contains

e.

(c) If Li is not empty then the triangles in T i

post
bounded by Li and the boundary of Ri are

added to T̂ .

4.2 Algorithmic Complexity

The complexity of the above algorithm is O(m+jT̂ j) wherem is the number of re�nement operations

contained in the input to the algorithm and jT̂ j is the number of triangles in the extracted surface.

This arises from the observations that the region expansion step can expand at most m regions and

that the surface extraction process extracts exactly jT̂ j triangles. Thus the order of the algorithm

depends on m, which is a factor introduced by the approximation process which generates the

input triangulations. The approximation method which is used by our implementation (described

in Section 6) generates re�nement operations such that m � 1

2
jV mj, where jV mj is the number of

vertices in the highest resolution triangulation in the input.

4.3 Proofs of Extracted Surface Properties

Proofs of the following theorems are presented:

� The extracted surface is complete.

� The extracted surface satis�es the RCF throughout the domain of the terrain.

� The extracted surface is the smallest set of triangles which can form a complete surface which

satis�es the RCF.
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� If the given triangulations T 0; : : : ; T m satisfy the Delaunay criterion then the extracted surface

will also satisfy this criterion.

Lemma 4.1 8p 2 
; 9t 2 T i

post
s.t. Ri 2 X and deathres(t) � RCF (p), i.e. the speci�cation of X

ensures that for every point in the domain there is a triangle which contains that point, is �ner than

the RCF and is in the regions on X .

Proof: The de�nition of X on page 6 states that for every triangle t in a region Ri on

X such that t is not �ner than the RCF, we can �nd another region with a higher birth

resolution whose domain intersects t, i.e.

8t 2 T k

post
where Rk 2 X and 9p 2 D(t) s.t. deathres(t) < RCF (p);

9Ri 2 X s.t. k < i and birthresi = deathres(t) and D(Ri) \D(t) 6= ;

Hence by induction, 8p 2 D(T 0); 9t 2 T i

post
s.t. Ri 2 X and deathres(t) � RCF (p).

Lemma 4.2 On entry to In�ll(Ri), no triangles of T i

post
partially cover those in T̂ , i.e. I(T i

post
) \

I(T̂ ) = I(T i

post
\ T̂ )

Proof: This is trivially true before the �rst call to In�ll since T̂ = ; at this point.

Assume true on entry to In�ll(Rj) for some j, 0 < j � m.

We must now prove that, on entry to the next call to In�ll, which will be made for the

region Rr where Rr 2 X and 6 9l : r < l < j s.t. Rl 2 X , it is true that I(T r

post
)\ I(T̂ ) =

I(T r

post
\ T̂ ).

� If I(T r

post
) \ I(T̂ ) = ;, then this is indeed true.

� If I(T r

post
) \ I(T̂ ) 6= ;, then 8t 2 T r

post
: I(t) \ I(T̂ ) 6= ;, 9Rk 2 X s.t. Rk 2

descendants(Rr) and I(t) \ I(Rk) 6= ;

Hence I(T r

post
) \ I(T̂ ) = I(T r

post
) \ I([fRs 2 X : Rs 2 descendants(Rr)g)

= I(T r

post
) \ I([fRs 2 X : Rs 2 children(Rr)g)

= I(T r

post
) \ I([fT s

pre
: Rs 2 X and Rs 2 children(Rr)g)

= I(ft : t 2 (T r

post
\ T s

pre
);8Rs 2 X s.t. Rs 2 children(Rr)g)

= I(T r

post
\ T̂ )

Corollary 4.1 The order of applying In�ll to the regions in X , i.e. �nest to coarsest, ensures that

on entry to In�ll(R0), T̂ is a complete triangulation.

Corollary 4.2 t 2 T i

post
is extracted by Infill(Ri) () I(t)\I(T̂ ) = ; i.e. a triangle is extracted

i� no other triangles which overlap its domain have already been extracted.

Theorem 4.1 The surface extraction process outlined above extracts a complete triangulation, T̂ ,

of the domain, 
.

Proof: The de�nition of X asserts that X always contains R0. By Corollary 4.1, on

entry to In�ll(R0), I(R0) \ I(T̂ ) = I(R0 \ T̂ ) and T̂ is a complete triangulation. It

follows from the de�nition of In�ll that In�ll(R0) will complete the triangulation over 
.

Theorem 4.2 The extracted surface satis�es the RCF throughout the domain, i.e.

8p 2 D(t); 9t 2 bT s.t. deathres(t) � RCF (p) (1)
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Proof: We again use induction to prove this theorem, examining the �rst call to In�ll

and then a later call to the same function, and hence show that statement (1) is a loop

invariant of the iterations on In�ll in the surface extraction process.

On the �rst call to In�ll(Ri), the �nest region inX is extracted completely. The de�nition

of X on page 6 proves that (1) is true.

Assume that (1) is true at some stage during the extraction process - after performing

In�ll(Rj), say, for 0 < j � m.

Now we must prove that statement (1) holds after the next call to In�ll, which will be

made for the region Rr where Rr 2 X and 6 9l : r < l < j s.t. Rl 2 X

If we assume that In�ll(Rr) extracts a triangle t from T r

post
which invalidates (1), i.e.

9p 2 D(t) s.t. deathres(t) < RCF (p), then by Lemma 4.1, for such p 2 D(t),

9�t 2 T s

post
: Rs 2 X; r < s < m s.t. p 2 D(�t) and 8q 2 D(�t); deathres(�t) � RCF (q)

and hence, by Corollary 4.2, triangle �t or a re�nement of �t would have already been

extracted and this contradicts our assumption that t is extracted by In�ll(Rr).

Theorem 4.3 T̂ is the smallest triangle set which can be extracted from R0; : : : ; Rm such that T̂

is a complete triangulation over 
 and every triangle in T̂ is �ner than the RCF.

Proof: We will show by induction that a loop invariant of the surface extraction process

is that after In�ll(Ri), T̂ is the smallest triangle set which could be extracted from R0,

: : :, Rm such that T̂ satis�es the RCF and completely covers
S

j=i

j=0
D(Rj).

After the �rst call to In�ll(Ri), where Ri is the �nest region in X , the de�nition of X
implies that Ri must be �ner than the RCF but not completely �ner. Thus there must

be at least one triangle in T i

pre
which is not completely �ner than the RCF and hence at

least one triangle, t, in T i

post
which is the only one in T 0

post
; : : : ; T i

post
which satis�es the

RCF over D(t). The minimal property of re�nement operations (page 4) implies that

the smallest set of triangles which can form a triangulation (i.e. are compatible) with t

over
S

j=i

j=0
D(Rj) is T i

post
and hence the loop invariant holds.

Assume the loop invariant is true after In�ll(Rj) for some j, 0 < j � m.

Now we must prove that the loop invariant holds after the next call to In�ll, which will

be made for the region Rr where Rr 2 X and 6 9l : r < l < j s.t. Rl 2 X

� If I(Rr) \ I(T̂ ) = ; then this can be treated in the same way as the initial Ri.

� If I(Rr) � I(T̂ ) then no elements of T i

post
will be added to T̂ by Corollary 4.2 and

therefore the loop invariant remains true.

� If I(Rr) \ I(T̂ ) 6= ; and I(Rr) 6� I(T̂ ) then the de�nition of In�ll states that we

will extract those triangles t in T i

post
for which I(t) \ I(T̂ ) = ;. We have already

shown that such t will satisfy the RCF (Theorem 4.2) and will be compatible with

T̂ (Corollary 4.2). Assume we can replace the triangles in D(T r

post
) \ D(T̂ ) by

triangles from some regions Rk1 ; : : : ; Rku , 0 � ki < r, i = 1; : : : ; u. This, though,
would contradict the minimal property of re�nement operations and hence the loop

invariant holds.

Theorem 4.4 If the input base triangulation, T 0, and sequence of re�nement operations, fR1, : : :,
Rmg satis�es the Delaunay criterion [PS85], then the output triangulation, T̂ , also satis�es this

criterion.

Proof: In the similar way to the Delaunay-satis�ability proof in [dD95], we note that the

vertices in each re�nement region Ri; 1 � i � m, cannot have an inuence, in terms of

the Delaunay criterion, outside that region. Hence when we add triangles to the current

triangulation, T̂ , these triangles will not a�ect the Delaunay nature of T̂ .
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5 Geomorphing

When the above technique is used to render a selectively-re�ned surface in an animation, the RCF

may change between frames. If, for example, the RCF contains view-dependent components, such

as those described in Section 3.4, then movement of the viewpoint will induce a change in the RCF.

This may result in di�erent selectively-re�ned surfaces being extracted for successive frames and if

these were displayed without modi�cation, the temporal discontinuities would be distracting to the

viewer. We therefore require a method of geomorphing between two such surfaces. (A geomorph is

speci�ed by Hoppe [Hop96] as a \smooth visual transition" between two geometric meshes.)

The geometric correspondence between surfaces extracted according to two di�erent RCFs is not

immediately obvious. For example, Figure 3 demonstrates the triangles in a simple selectively-re�ned

surface which are a�ected by the movement of an AOI. The AOI peak in the RCF is moved towards

the viewer between Figures 3(a) and (d) (in which the extracted surface triangles are coloured

according to the re�nement region of which they are part), with the result that the low-resolution

triangles in the foreground cannot satisfy the new RCF and hence some of these must be replaced by

higher resolution triangles. Figures 3(c) and (f) highlight the triangles which must be geomorphed,

and the retriangulation into which they must be morphed, due to the modi�cation of the RCF. By

considering the di�erences between the set of expanded regions from which the pre- and post-morph

surfaces can be extracted, we can identify the geometric correspondence between such surfaces.

We assume that we have two functions, MorphCoarsen(Ri) andMorphRe�ne(Ri), which perform

a smooth geometric transition between the post-re�nement triangles of operation Ri and the pre-

re�nement triangles of Ri, and the reverse, respectively. A method of implementing such functions

was described by Cohen-Or and Levanoni [COL96]. Discrete and scalar attributes associated with

the triangles could be interpolated in a similar fashion to that described by Hoppe [Hop96] for the

Progressive Mesh approximation format.

The functions MorphCoarsen() and MorphRe�ne() can only be invoked if all of the triangles

which are the starting points for their transitions exist in the current surface. This governs the

overall geomorphing strategy.

We �rst require a minor addition to the above surface extraction algorithm: if we extract a

re�nement region completely, as we do in step (2a) on page 7, then the region is regarded as a

\starting point" for extraction and it is added to a list, C, of regions which could be coarsened in

the event of a suitable geomorph. C is initialised to an empty list at the start of the surface-extracting

process.

5.1 Algorithm

The geomorphing algorithm proceeds in two steps (note that listsX and C must have been previously

created by the selective re�nement algorithm):

1. Coarsening

We repeatedly identify regions in X which have been completely extracted in the current

surface and hence are candidates for coarsening.

On each iteration, we traverse list C in order of decreasing resolution until we �nd a region Ri 2

C which is completely �ner than the RCF. We then render the surface by performing the surface

extraction part of the selective re�nement algorithm (as above) and call MorphCoarsen(Ri)

when Ri is encountered during the extraction process. Once the visual morph of this region

has been completed, we can delete Ri from X so that X now reects the set of regions from

which the displayed surface originates. Note that the action of extracting a surface will have

modi�ed the list C in preparation for the next iteration of this coarsening step.

When no regions in C are completely �ner than the RCF, X contains the set of re�nement

regions which can be traversed by the surface extraction algorithm in order to produce a

surface which satis�es the minimum value of the previous and current RCFs at every point in

the domain.

2. Re�ning

We traverse the list of expanded regions, X , from its coarsest element to its �nest in order to

further expand some of these regions and hence ensure that X contains the set of regions from

which a surface can be extracted which will satisfy the new RCF.
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If a region Ri 2 X is not �ner than the RCF then we perform a set of re�ning morphs which

are compatible with the current surface and which result in all of the members of children(Ri)

which are not completely �ner than the RCF being members of X . For such a region Ri, we

create a set containing the elements of children(Ri) which are not completely �ner than the

RCF as well as the ancestors of these regions which are not already in X . This set of regions

is then morphed into the current surface by performing MorphRe�ne on the elements of the

set in order of increasing resolution.

The simplicity of the re�ning step is demonstrated by the following pseudo-code.

Function: GeomorphRe�ning

In/Out:X: expanded regions list

begin

for each Ri 2 X in coarsest to �nest order do

Y := ;
for each Rj 2 children(Ri

) do

if Rj
is not completely �ner than the RCF and Rj =2 X then

Y := Y +Rj
+ ancestors(Rj

)nX
endif

endfor

while Y 6= ; do

remove Rk
from Y where Rk

is the element of Y with lowest birth resolution

X := X +Rk

extract surface, calling MorphRe�ne(Rk) when Rk
encountered

endwhile

endfor

end

5.2 Proofs of Geomorphed Surface Properties

We will show that the set of regions in X after a geomorph are those which would have been placed

on X if the region expansion step of the selective re�nement algorithm had been applied to the same

RCF. It follows that a geomorphed surface satis�es the properties identi�ed in Section 4.3.

We assume that the region expansion step of the selective re�nement algorithm has been per-

formed for an RCF, RCFold, and that the geomorphing step transforms the set of regions on X into

one from which a surface can be extracted which will satisfy RCFnew.

Lemma 5.1 The regions in X after the coarsening step are those which would have been placed

on X if the region expansion step of the selective re�nement algorithm had been performed for a

\common denominator" RCF, where this is de�ned 8p 2 
 as:

RCFcd(p) = min(RCFold(p); RCFnew(p))

Proof: We are trying to verify that after the coarsening step the regions in X satisfy:

Ri 2 X () (9Rj 2 X : Ri 2 children(Rj); Rj is not �ner than RCFcd and (2)

Ri is not completely �ner than RCFcd) or 9R
k 2 X : Ri 2 ancestors(Rk)

We will �rst prove the necessary case of statement (2), i.e.

(9Rj 2 X : Ri 2 children(Rj); Rj is not �ner than RCFcd

and Ri is not completely �ner than RCFcd) or 9R
k 2 X : Ri 2 ancestors(Rk)) Ri 2 X

The coarsening step removes regions from X only if they have been placed on list C and

are completely �ner than RCFnew . Hence no region which is not completely �ner than

RCFcd will be removed from X and thus

9Rj 2 X : Ri 2 children(Rj); Rj is not �ner than RCFcd and

Ri is not completely �ner than RCFcd ) Ri 2 X
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will remain true.

Also, the de�nition of the surface extraction \starting point" regions which are placed

on C implies that children(Ri) \ X 6= ; ) Ri =2 C and therefore the coarsening step

will never remove a region which is an ancestor of another on X . Hence the statement

9Rk 2 X : Ri 2 ancestors(Rk)) Ri 2 X will remain true.

The su�cient case can be proved by contradiction. Assume that after the coarsening

step a region Ri exists in X which is completely �ner than RCFcd and 6 9Rk 2 X :

Ri 2 ancestors(Rk). Then Ri will have been placed on list C and, since Ri must be

completely �ner than RCFnew , it will have been removed from X by the coarsening step.

This contradicts our assumption.

Theorem 5.1 After the re�ning step, the set of regions in X are those which would have been

placed on X if the region expansion step of the selective re�nement algorithm had been applied to

RCFnew , i.e.

Ri 2 X () (9Rj 2 X : Ri 2 children(Rj); Rj is not �ner than RCFnew and (3)

Ri is not completely �ner than RCFnew) or 9R
k 2 X : Ri 2 ancestors(Rk)

Proof: The necessary case of statement (3) holds trivially by the de�nition of the

GeomorphRe�ning routine.

Lemma 5.1 demonstrated that statement (2) holds after the coarsening step and hence

the su�cient case of statement (3) is also true at that point. The de�nition of Geomor-

phRe�ning implies that the only regions which are added to X (if they are not already

present) are the children of any region in X which is not �ner than the RCF, if they

themselves are not completely �ner than the RCF, together with their ancestors. Hence

the su�cient case will remain true.

6 Results

To prepare a continuous-resolution mesh which could be input to our implementation of the selec-

tive re�nement algorithm, we used a modi�cation of the Delaunay selector approximation method

presented in [DP95]. Our modi�cation is that point insertion in a re�nement region continues until

the global approximation error has been reduced to a value lower than the error before the region

was created. Figures 4(a),(b) and 6(a),(b) show the highest resolution triangulations in the resulting

approximations of Digital Elevation Model [EC84] datasets of Mt St Helens (WA.) and Emory Peak

(TX.).

Figure 4 presents the inputs and outputs of an application of the selective re�nement algorithm

to the Emory Peak approximation. The complete set of input re�nement operations is visualised

embedded in resolution space in Figure 4(c). The input RCF which speci�ed an increased resolution

in the foreground and background of a particular view is shown in Figure 4(d). The region expansion

and surface extraction processes used this RCF to produce the selectively-re�ned surface which is

viewed from its intended viewpoint in Figure 4(e). Its plan view (Figure 4(f)) demonstrates where

the output triangle density was increased due to the inuence of the RCF. Figure 4(g), which shows

the extracted surface's triangles at their individual death resolutions, demonstrates that the surface

satis�es the RCF since all of the triangles lie above the RCF in resolution space.

The example RCF discussed in Section 3.4 (Figure 5(e)) was applied to the Mt St Helens approx-

imation to produce a selectively-re�ned scene (Figure 6(f)) which can be compared with the same

view of the highest resolution triangulation (Figure 6(d)). Figures 6(f),(g) and (h) demonstrate that

the RCF has ensured that the resolutions of the crater's silhouette, the region in the \Head Up

Display" and the foreground of the scene have been enhanced with respect to the surrounding area.

The same RCF was modi�ed to match the view frustum of Figure 6(e), i.e. the view frustum,

Head Up Display and viewpoint AOI components of the RCF were moved forward with respect to

the original view direction. The output surface from this RCF is viewed as intended in Figure 6(j).

Figures 6(k),(l) and (m) demonstrate the di�erences between this extracted surface and the previous

one.
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Timings for these applications of the selective re�nement algorithm, together with the use of

another RCF on the Mt St Helens data, were obtained using OpenGL on an SGI Indigo2 175Mhz

R10000 Solid Impact (Table 1). This demonstrates that the rendering time (\Extraction Time")

for each selectively-re�ned mesh is signi�cantly less than for the same view of the corresponding

highest resolution triangulation. Even when the total processing time for each selectively-re�ned

mesh (\Expansion time" + \Extraction Time") is considered, a static scene which meets the user's

resolution requirements can be rendered up to 57% faster than a view of the highest resolution

triangulation.

Emory Peak dataset Mt St Helens dataset

Input T m (approximated by 6000pts (approximated by 7200pts

and 11875 triangles) and 14247 triangles)

Similar to
View of T m Fig 4(a) Fig 6(d) Fig 6(e)

Fig 6(d)

Time to

render T m
0.43s 0.57s 0.56s 0.59s

Fig 5(e) with Viewpoint and
RCF Fig 4(d) Fig 5(e)

reduced view frustum crater AOIs

Expansion

time
0.27s 0.32s 0.20s 0.20s

jX j 702 437 414 236

Extraction

time
0.11s 0.07s 0.06s 0.04s

j bT j 2511 1587 1510 1014

Table 1: Selective mesh re�nement applied to various datasets, views and RCFs.
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Figure 2: Geomorphing results during a traversal over the Mt St Helens mesh.

The numerical results of geomorphing during a traversal over the Mt St Helens dataset are given

in Figure 2. The set of re�nement regions which produced the static selectively-re�ned mesh shown

in Figure 6(f) was pre-calculated (in 0.32s). The viewpoint was then stepped forward and the RCF

was modi�ed accordingly (as described above). The end-point of the traversal was Figure 6(j).

The numbers of re�nement region re�nings and coarsenings which were visible and pending during

each frame are graphed in Figure 2(a), where the number of re�nings pending are on the positive axis

and the number of coarsenings on the negative. The \saw-tooth" nature of this graph reects the

sequence of operations described in Section 5, namely that, repeatedly, a sequence of coarsenings was

applied, the next set of necessary re�nings was determined and then these re�nings were applied. The

potential for parallelizing the geomorphs has not yet been realised in our implementation and hence

the number of morphs pending decreases uniformly. It can be seen that only a small proportion of

re�nement regions (at most 16, out of over 400) were marked as pending throughout the transition.

The number of triangles in the mesh (Figure 2(b)) was correspondingly increased and decreased

by these re�nings and coarsenings. This graph has a generally increasing nature because only the

�rst 200 frames of the animation are depicted and the coarsenings marked in the blue region of
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Figure 6(l) had yet to take place. The three abrupt increases in the number of triangles in the mesh

are due to a number of re�nings having been applied simultaneously because they lay outside the

current view.

The total time per frame is given in Figure 2(c), together with a line indicating a rendering time

which would permit 10 frames/sec. Our rendering time is generally below this line; the peaks above

this line occur at the points where the next set of re�nings had to be determined. The rendering

time of each frame is still signi�cantly less than the average time to render a scene of the animation

from the highest resolution triangulation (0.57s).

7 Related Work

Independently, and in parallel with this work, Puppo [Pup96] has developed a theoretical method for

meshing a set of single-resolution TINs into a static variable resolution representation of a surface.

His algorithm di�ers from our selective re�nement process in that it combines the region expansion

and surface extraction steps. This prevents any further operations on the set of expanded regions,

such as the above geomorphing technique. Puppo does not present an implementation of his theory.

Cohen-Or and Levanoni [COL96] also describe an approach to selective mesh re�nement which

is based on merging triangulated subsets of the domain from di�erent levels of detail, and they

tackle the temporal continuity problem. They combine De Berg and Dobrindt's work [dD95] with a

tree structure to represent the overlaps between re�nement regions, rather than the DAG which we

have described. Thus the method is limited to the use of terrain approximations which have been

produced by decimating Delaunay triangulations. Cohen-Or restricts the depth of the tree structure

to only three or four levels which means that a) only a limited number of resolution levels can be

accurately represented by an extracted surface; and b) re�nement regions containing large numbers

of triangles will have to be considered during a geomorphing step.

A limited form of RCF to control the level of detail in an approximation was presented by Gross

et al [GGS95]. This paper applies a Gaussian �lter to the coe�cients of a wavelet transform of

terrain data in order to enhance the resolution of an AOI. Again, this method is restricted to a

speci�c method of approximating terrain meshes, namely repeated point removal from a quad-mesh.

8 Conclusions and Future Work

A framework has been presented within which an approximation to a terrain can be selectively

re�ned according to a global object-space Resolution Control Function and this selective re�nement

can then be modi�ed smoothly to adapt to dynamic rendering requirements. The foundation for

this technique is a generalised continuous-resolution representation for surfaces which permits our

selective re�nement method to be applied to most existing single-resolution terrain approximating

schemes.

We have presented results which demonstrate the e�ciency of our scheme. Our current im-

plementation was not primarily designed for speed, yet it can render a ight over a geomorphing

selectively-re�ned surface at almost interactive frame rates. There are opportunities for perfor-

mance enhancements in a number of areas, such as constraining geomorphing considerations to the

subgraph of the re�nement regions' DAG which relates to the current scene; and parallelisation of

independent geomorphs.

Other areas of future work include extending our geomorphing technique of post-processing a

previously expanded set of re�nement regions to other simulation tasks such as database transmission

and dynamic terrain e�ects. Also, Hoppe's progressive mesh approach [Hop96] can be utilised by

our selective re�nement framework for terrain rendering, but if a PM representation of a 3D model

is to be selectively re�ned in this way then an adaptation of the RCF concept is required.
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